- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Henderson, Conor (2)
-
Kar, Chandiprasad (2)
-
Modak, Atanu (2)
-
Wang, Xiao (2)
-
Aaij, Roel (1)
-
Aarrestad, Thea Klaeboe (1)
-
Aarup Petersen, Henriette (1)
-
Abbaneo, Duccio (1)
-
Abbiendi, Giovanni (1)
-
Abbrescia, Marcello (1)
-
Abdalla, Hassan (1)
-
Abdelmotteleb, Ahmed_Sameh Wagih (1)
-
Abdullin, Salavat (1)
-
Abellan_Beteta, Carlos (1)
-
Abercrombie, Daniel (1)
-
Abreu, Andrés (1)
-
Abudinèn, Fernando Jesus (1)
-
Acharya, Himal (1)
-
Ackernley, Thomas (1)
-
Acosta, Darin (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Measurements are presented of the cross-section for the central exclusive production ofJ/\psi\to\mu^+\mu^- and\psi(2S)\to\mu^+\mu^- processes in proton-proton collisions at\sqrt{s} = 13 \ \mathrm{TeV} with 2016–2018 data. They are performed by requiring both muons to be in the LHCb acceptance (with pseudorapidity2<\eta_{\mu^±} < 4.5 ) and mesons in the rapidity range2.0 < y < 4.5 . The integrated cross-section results are\sigma_{J/\psi\to\mu^+\mu^-}(2.0 where the uncertainties are statistical, systematic and due to the luminosity determination. In addition, a measurement of the ratio of\psi(2S) andJ/\psi cross-sections, at an average photon-proton centre-of-mass energy of1\ \mathrm{TeV} , is performed, giving$ = 0.1763 ± 0.0029 ± 0.0008 ± 0.0039,$$ where the first uncertainty is statistical, the second systematic and the third due to the knowledge of the involved branching fractions. For the first time, the dependence of theJ/\psi$ and\psi(2S) cross-sections on the total transverse momentum transfer is determined inpp collisions and is found consistent with the behaviour observed in electron-proton collisions.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Tumasyan, Armen; Adam, Wolfgang; Andrejkovic, Janik Walter; Bergauer, Thomas; Chatterjee, Suman; Dragicevic, Marko; Escalante Del Valle, Alberto; Fruehwirth, Rudolf; Jeitler, Manfred; Krammer, Natascha; et al (, Journal of Instrumentation)Abstract Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb -1 at √s = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate various mismodelling conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses.more » « less
An official website of the United States government
